Product Information
The structural stud is fabricated from prime mill certified steel with a true galvanized coating. Heavier coatings may be available upon request.

Steel Material Properties
- Labeled Thickness: 54 Mil
- Design Thickness: 0.0566"
- Minimum Thickness: 0.0538"
- Yield Strength (Fy): 50 ksi
- Tensile Strength (Fu): 65 ksi
- Galvanize Coating Thickness: G60
- Color Code (Painted Ends): Green

LEED - Contributing Credits
- LEED 2009 - MRc2 (2 points) & MRc4 (2 points)
- LEED v4 - MR Credits - EPD (2 points) - Waste Management (2 points) - Sourcing of Raw Materials (1 point) - Material Ingredients (1 point) - Innovation (2 points)

ASTM and AISI Code Standards
- ASTM A653/A653M, A924/A924M, A1003, C645, C754, C955, C1007
- AISI NASPEC 2007 Edition S100-07 (Supplement S2-10 for IBC 2012)
- 2012, 2015 International Building Codes and 2014 FBC

Section Properties
Table Notes:
1. The centerline bend radius is based on inside corner radii.
2. Effective properties incorporate the strength increase from the cold work of forming as applicable per AISI S100 A7.2.
3. Tabulated gross properties are based on the full-unreduced cross section of the studs away from punch-out’s.
4. For deflection calculations, use the effective moment of inertia.
5. Allowable moment is the lesser of Mal and Mad. Stud distortional buckling is based on an assumed Kφ = 0.

<table>
<thead>
<tr>
<th>Section</th>
<th>Area (in²)</th>
<th>Weight (lb/ft)</th>
<th>lx (in³)</th>
<th>SX (in)</th>
<th>RX (in)</th>
<th>ly (in)</th>
<th>Ry (in)</th>
<th>lxe (in³)</th>
<th>Sxe (in³)</th>
<th>RxSx (in⁴)</th>
<th>Mal (in·k)</th>
<th>Mad (in·k)</th>
<th>Vag (lb)</th>
<th>Vahet (lb)</th>
<th>Jx1000 (in⁴)</th>
<th>Cw (in)</th>
<th>Xo (in)</th>
<th>m (in)</th>
<th>Ro (in)</th>
<th>B</th>
<th>Lu (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350S162-54</td>
<td>0.415</td>
<td>1.41</td>
<td>0.804</td>
<td>0.460</td>
<td>1.392</td>
<td>0.152</td>
<td>0.606</td>
<td>0.804</td>
<td>0.426</td>
<td>12.74</td>
<td>13.05</td>
<td>3372</td>
<td>947</td>
<td>0.443</td>
<td>0.426</td>
<td>-1.298</td>
<td>0.782</td>
<td>1.998</td>
<td>0.578</td>
<td>34.5</td>
<td></td>
</tr>
</tbody>
</table>

Limiting Wall Heights
Table Notes:
1. Listed wind pressures represent calculated designed wind pressure (1.0 W based on 2009 or 0.6 W based on 2012 IBC). For deflection calculations, listed wind pressures have been reduced by 0.70 as allowed by IBC. The 5 psf pressure has not been reduced for deflection checks.
2. Studs must be braced against rotation and lateral movement at all supports.
3. Studs are assumed to be adequately braced at a maximum spacing of Lu to develop full allowable moment.
4. Web crippling check is based on 1” of bearing at end supports and 3” of bearing at interior support.
5. Shear and web crippling capacity at end supports have not been reduced for punch-out’s. Shear and web crippling capacity at interior support have been reduced for the presence of punch-out adjacent to the support.

<table>
<thead>
<tr>
<th>Stud Spacing (in)</th>
<th>Non-Composite Fully Braced (5 psf)</th>
<th>Non-Composite Fully Braced (15 psf)</th>
<th>Non-Composite Fully Braced (20 psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/120</td>
<td>L/240</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>12" o.c.</td>
<td>27 7"</td>
<td>21 11"</td>
<td>19 1"</td>
</tr>
<tr>
<td>16" o.c.</td>
<td>25 1"</td>
<td>19 11"</td>
<td>17 4"</td>
</tr>
<tr>
<td>24" o.c.</td>
<td>21 11"</td>
<td>17 4"</td>
<td>15 2"</td>
</tr>
<tr>
<td>350S162-54</td>
<td>27 7"</td>
<td>21 11"</td>
<td>19 1"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>